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a b s t r a c t

Biodiversity hotspots have been used extensively in setting conservation priorities for marine
ecosystems. A recent Nature publication claims to have uncovered new latitudinal gradients in the
evenness of reef communities and new reef hotspots based on functional diversity. Simulation models
show that the purported evenness gradient is a mathematical inevitability of differences in species
richness and detectability between vastly different marine ecosystems, namely ‘reefs’ in tropical,
temperate, and polar regions. Constraints on evenness, along with disparity amongst communities in
possible functional traits, cast doubt on the utility of global functional diversity comparisons for
management of marine systems.

& 2014 Elsevier Ltd. All rights reserved.

Global conservation priorities often centre on threatened
species-rich areas known as ‘hotspots’ [1]. Much ocean conserva-
tion effort is, for example, directed to the Indo-Pacific Coral
Triangle [2,3]. Although it is widely recognised that this focus
on species richness overlooks the contributions of species abun-
dances and trait diversity to ecosystem functioning, documenting
global patterns in these metrics has been hindered by a paucity of
data. In a recent paper published in Nature, Stuart-Smith et al. [4]
claim to make a significant step forward in this regard. Using
standardized reef fish surveys from tropical, temperate, and polar
‘reefs’ around the world, the authors describe a hitherto unnoticed
latitudinal gradient in community evenness – a measure of
species' relative abundances – which contributes to the identifica-
tion of new functional diversity hotspots [4]. Neither of these
findings withstands scrutiny.

Evenness, E, has previously been shown to be constrained both
by species richness, S, and by the number of individuals observed,
N [5,6]. It will be high whenever a small number of species or
individuals are observed. For example, the evenness of a commu-
nity with three species, in which only 1, 2, or 3 individuals are
counted, is either 0.9 or 1: {N¼1: species detected (SD)¼1, E¼1;
N¼2: SD¼1 or 2, E¼1 in both cases; N¼3: SD¼3, 2, or 1 E¼1,

0.9 or 1}. More broadly, it has been shown that, over a range of
evenness indices, evenness is not independent of species richness
[5,6].

Here, the extent of these constraints, and their impact on
Stuart-Smith et al.'s [4] findings, were tested by examining how
evenness varies across combinations of S and N in simulated
communities. Evenness was calculated over the feasible set of
richnesses (1–1200) and number of individuals counted (1–2400)
observed in Stuart-Smith et al.'s [4] surveys, using their evenness
metric, the inverse Simpson diversity index divided by species
richness. In this measure of evenness

E¼ ∑N
i ¼ 1p

2
i

� ��1

N
ð1Þ

where pi is the proportional abundance of species i, divided by
species richness, N (Eq. (1)). Abundances, reflecting the number of
individuals detected in a single sample were generated with a
species abundance distribution (SAD) across the range of richness
values. Detectability of each species was simply a reflection of
the SAD, where dominant species were detected more frequently
than rare species. Truncated forms of the lognormal, gamma,
and exponential distributions [7] were examined, and the shape
parameters of each distribution varied to test SADs ranging from
the classic hollow curve (i.e., few dominant species and many rare
species) [8] to approximately even communities (i.e., species have
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nearly equal abundances). Simulations for each distribution form
were repeated for 9999 replicates.

These simulations reveal that evenness is mathematically
constrained to be high whenever species richness is low (o10–
40 species, the exact threshold depending on the underlying SAD)
and to be low whenever species richness is high (i.e., exceeding
the threshold of o10–40, depending on the underlying SAD;
Fig. 1; [9]). Moreover, variability in estimated evenness is highest
below the richness threshold [9]. Irrespective of richness, evenness
also is constrained to be high when N is low (Fig. 1). These results
are robust across the entire range of plausible SADs, tested using
the aforementioned probability distributions and shape para-
meters [9]. Thus, high evenness can arise in only three ways:
(1) in a truly depauperate community; (2) as a statistical artefact of
poor detectability (i.e., low observed S); or (3) as a statistical
artefact of undersampling (i.e., low N). Indeed, for all well-sampled
communities (i.e., those with at least several hundred individuals
counted, as in the bottom set of numbers in Fig. 1) above the
species richness threshold, evenness was always between 0.15 and
0.47 (Fig. 1 and simulations presented in [9]). Uneven community
values should not be surprising: they are a direct consequence of
the ‘hollow curve’, which some have called a universal law [8,10].

We posit that Stuart-Smith et al.'s latitudinal evenness gradient
is largely a statistical artefact of poor detectability [4]. Imperfect
species detectability is a given with any underwater visual census.
Problems arise, however, when communities with significantly
different detectabilities and different community richness values,
such as tropical coral reefs and temperate rocky reefs are com-
pared [11,12]. Failure to detect rare or cryptic species in low
visibility temperate and polar waters that already support a
smaller species pool can push these communities below the
richness ‘threshold’, and lead to artificially inflated evenness
estimates. Stuart-Smith et al.'s [4] low diversity estimates for
temperate and polar regions sit below the ‘threshold’, constraining
their evenness estimates. Independent estimates of local richness
using underwater video or enhanced survey effort at comparable
sites vault temperate marine fish communities closer to or above
the richness threshold [11,13–17]. In tropical reef systems, visibi-
lity is generally much higher, and although some rare or cryptic
species may go undetected because of habitat complexity, the

greater underlying community richness ensures that samples sit
above the threshold. Without confident detection of rare species,
evenness estimates of any low diversity system are subject to the
mathematical constraints outlined here (Fig. 1) and are likely not
reflective of true community diversity. In short, such diversity
indicators are biased and misleading.

These biases also call into question the validity of the presented
functional diversity patterns [4]. Determining precisely how such
biases affect functional diversity metrics is an important next step
in diversity research. With respect to Stuart-Smith et al.'s results,
although much has been made of the ‘new hotspots of functional
diversity’ for marine fishes [18], we note that neither of the two
‘temperate hotspots’, the Benguela Current and the Humboldt
Current, has any data underlying them [4]. Both are purely
unvalidated model predictions. Caution also should have been
taken in comparing functional diversity across vastly different
marine ecosystems. Fundamental differences in trophic structure
(herbivorous fishes and corallivores help to maintain tropical reef
structure [19], and yet are largely absent on temperate reefs),
oceanographic processes, patterns of species distribution and diel
behaviour patterns [11] indicate that comparisons of tropical and
temperate reef functions in fact require distinct approaches, with-
out which global comparisons are meaningless.

In sum, the mathematical constraints of evenness and the
disparity of functional traits confound global comparisons of
ecosystems and produce misleading diversity patterns. No ecolo-
gical mechanism need be invoked to explain Stuart-Smith et al.'s
[4] latitudinal evenness gradient; rather, it is a mathematical
inevitability of low species detectability in temperate regions.
Additionally, functional traits are generally specific to one ecosys-
tem type and cannot meaningfully be compared across fundamen-
tally different ecosystems. Used correctly and alongside other
ecological criteria, biodiversity metrics can help to direct marine
conservation priorities [20,21]. However, the simulations pre-
sented here indicate that Stuart-Smith et al.'s [4] diversity patterns
are misleading. Interpretations of evenness estimates as indicators
of ecosystem properties should be treated with caution, particu-
larly in cross-ecosystem comparisons. Explicit consideration of the
limitations of diversity metrics is paramount to the development
of successful marine conservation prioritisation schemes.
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