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Abstract Our ability to understand natural constraints on

coral reef benthic communities requires quantitative

assessment of the relative strengths of abiotic and biotic

processes across large spatial scales. Here, we combine

underwater images, visual censuses and remote sensing

data for 1566 sites across 34 islands spanning the central-

western Pacific Ocean, to empirically assess the relative

roles of abiotic and grazing processes in determining the

prevalence of calcifying organisms and fleshy algae on

coral reefs. We used regression trees to identify the major

predictors of benthic composition and to test whether

anthropogenic stress at inhabited islands decouples natural

relationships. We show that sea surface temperature, wave

energy, oceanic productivity and aragonite saturation

strongly influence benthic community composition; over-

looking these factors may bias expectations of calcified

reef states. Maintenance of grazing biomass above a rela-

tively low threshold (* 10–20 kg ha-1) may also prevent

transitions to algal-dominated states, providing a tangible

management target for rebuilding overexploited herbivore

populations. Biophysical relationships did not decouple at

inhabited islands, indicating that abiotic influences remain

important macroscale processes, even at chronically dis-

turbed reefs. However, spatial autocorrelation among

inhabited reefs was substantial and exceeded abiotic and

grazing influences, suggesting that natural constraints on

reef benthos were superseded by unmeasured anthro-

pogenic impacts. Evidence of strong abiotic influences on

reef benthic communities underscores their importance in

specifying quantitative targets for coral reef management

and restoration that are realistic within the context of local

conditions.
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Introduction

Coral reef benthic communities are influenced by abiotic

and top-down controls operating across a range of spatial

scales (Mumby et al. 2006; Williams et al. 2013, 2015a).

Interactions between fine-scale physical influences, such as

wave exposure, and biotic influences, such as herbivorous

grazing, are powerful structuring influences at local scales

(Rasher et al. 2012), whereas large-scale abiotic influences

may dominate at regional or global extents (Gove et al.

2013). Beyond the interplay between biotic and abiotic

factors, anthropogenic disturbances can now also pro-

foundly alter macroecological patterns, such that chronic

anthropogenic stress can ‘decouple’ benthic organisms

from their environment, rendering abiotic and biotic pro-

cesses inaccurate predictors of benthic community struc-

ture (Williams et al. 2015a). As human impacts become

more severe and widespread (Hughes et al. 2017), our

understanding of altered benthic states will require empir-

ical measures of the relative influences of abiotic and biotic

processes across reef regions, set within the context of

chronic stress.

In addition to the scleractinian corals that are the

foundation of coral reef ecosystems, reef benthos is often

also composed of crustose coralline algae (CCA), as well

as turf and fleshy macroalgae. Hard coral and crustose

coralline algae deposit calcium carbonate to form a struc-

tural reef architecture, whereas turf and fleshy macroalgae

occupy coral settlement space and overgrow dead coral

structures, although some macroalgal species also deposit

carbonate (McCook et al. 2001). Examples from the Pacific

Ocean show that the relative dominance of calcifying reef

builders (hard coral, CCA) and non-calcifying algal

organisms (turf and fleshy macroalgae) shifts along

anthropogenic (Barott et al. 2012) and environmental gra-

dients (Williams et al. 2015a), suggesting that reef benthos

can exist in multiple regimes (Knowlton 1992) rather than

only hard coral- or fleshy algal-dominated states (McMa-

nus and Polsenberg 2004). Thus far, however, the influ-

ences of abiotic factors and grazing at ‘macroscales’ (i.e.,

across biogeographic regions) have only been considered

independently of one another and it is unclear whether

there are potential interactions between them.

Grazing effects on coral reef benthic composition appear

to vary widely across spatial scales. Small-scale experi-

mental studies indicate that benthic community composi-

tion is strongly linked to the biomass (Mumby et al. 2006)

and diversity (Burkepile and Hay 2008; Rasher et al. 2013)

of herbivorous fishes, which maintain algal communities in

cropped states that are likely to be relatively benign for

coral growth and recruitment (Green and Bellwood 2009).

The role of herbivorous fish biomass at macroecological

scales is more uncertain, with correlative analyses pro-

viding examples of positive (Jouffray et al. 2015; Heenan

and Williams 2013), negative (McCauley et al. 2014) and

insignificant (Carassou et al. 2013; Suchley et al. 2016)

influences of herbivore biomass on the promotion of cal-

cifier cover or control of algal abundances. The disconnect

between small-scale experiments and large-scale observa-

tions may be due to important but unquantified abiotic

influences that, for example, place natural limits on

recoverable levels of coral cover.

Indeed, there is evidence that diverse abiotic factors can

influence coral reef benthic community composition. Nat-

ural variability in wave energy has recently been shown to

influence local habitat suitability for coral survival (Gove

et al. 2015) and grazers’ foraging ability (Bejarano et al.

2017), with exposed reefs generally characterized by low

cover of calcifying organisms and a benthic community

dominated by low-lying algal organisms (Williams et al.

2013, 2015a). Across regions and oceans, latitudinal gra-

dients in the distribution of hard coral, CCA and algal

cover likely reflect positive influences of sea surface tem-

perature and the bottom-up influence of oceanic produc-

tivity on the growth rates of calcifying organisms, with

coral and CCA cover declining from equatorial reefs to

reefs in subtropical latitudes (Barott et al. 2012; Williams

et al. 2015a). The availability of dissolved aragonite is

strongly associated with calcification rates (Gattuso et al.

1998), and yet, despite evidence that aragonite saturation

state can vary naturally among regions (Kuchinke et al.

2014), biochemical influences on reef benthic condition

remain untested at large scales. Thus, reef benthic com-

position may be largely determined by local abiotic con-

ditions, which derive from large-scale oceanographic

processes. Yet, because all large-scale studies examining

abiotic drivers to date have all focused solely on these

drivers, it remains unclear how local grazing effects might

modify, disrupt or enhance environmental constraints.

Additionally, temporal shifts from coral to algal domi-

nance within a location may be associated with increased

anthropogenic disturbances (e.g., sedimentation, pollution,

overexploitation of grazers, habitat destruction, heat stress)

that disrupt abiotic and top-down controls (Hughes et al.

2003; Graham et al. 2015). Although phase shifts from

coral to algal states have been clearly documented on

heavily degraded Caribbean reefs (Hughes et al. 2010) and

following climate-driven thermal stress events in the

Western Indian Ocean (Graham et al. 2015), in the Pacific,

algal-dominated states can also occur on unimpacted

remote reefs (Vroom and Braun 2010), and anthropogenic

pressures may alter coral, CCA and fleshy algal abun-

dances to produce multiple reef regimes (Jouffray et al.

2015). At local scales, site-level shifts in benthic state have

been linked to fishing pressure and water quality metrics in
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some locations (e.g., Jouffray et al. 2015), but at larger

scales—e.g., islands—human impacts have been measured

by comparing benthic states between uninhabited and

inhabited reefs (Williams et al. 2015a). In this way, reef

benthic communities have been shown to ‘decouple’ from

natural abiotic processes on inhabited Pacific islands, likely

due to reorganization of dominant benthic taxa (Williams

et al. 2015a). Nevertheless, it remains unclear whether

abiotic decoupling is detectable at smaller scales (i.e., site

level), or whether intra-island differences in benthic state

are partly attributable to gradients in herbivore

exploitation.

Macroecological tests of competing abiotic, biotic and

anthropogenic influences can help to resolve how reef

conditions determine benthic composition. Such analyses

enable meaningful comparisons of reef regions and thus

improve our understanding of anthropogenic impacts.

Here, we combine site-level underwater image and visual

census data with remotely sensed environmental data to

test the relative influence of abiotic and biotic processes on

the relative abundances of calcifying hard coral and CCA

versus non-calcifying turf and macroalgal organisms at 34

Pacific islands and atolls. Surveyed islands display sub-

stantial spatial heterogeneity in abiotic conditions, ranging

from warm equatorial reefs to cool subtropical reefs

(Williams et al. 2015a), from oligotrophic island chains to

atolls in productive upwelling zones, and including sub-

stantial intra-island and inter-island variability in wave

energy (Gove et al. 2013). The islands also form several

distinct island groups, each of which has large gradients in

fishing pressure and in herbivore biomass (Heenan et al.

2016). We quantified the relative importance of 4 abiotic

variables (temperature, oceanic productivity, wave energy

and aragonite saturation state) and 3 grazing variables

(grazer, scraper/excavator and browser herbivore biomass)

in predicting fine-scale patterns in the relative abundance

of calcifying (hard coral and CCA) and algal (turf and

macro) organisms—the reef-builder index—over the extent

of the Central Pacific Ocean (* 43� latitude 9 61� lon-

gitude). While recognizing that coral reef benthos com-

prises of numerous species and taxonomic groups, we have

used a univariate indicator (building on Smith et al. 2016)

because it provides both a clear delineation between two

major categories of reef benthos and a tractable means of

assessing major types of drivers (abiotic, biotic and

anthropogenic) across reef regions. We hypothesized that

coral reef benthic community composition would be pri-

marily predicted by abiotic factors, because these set fun-

damental constraints on the growth rates of competing

benthic organisms, with secondary influences from grazers

in promoting calcified states. By fitting statistical models

separately to uninhabited and inhabited islands, we also

considered how predicted relationships might decouple

under a chronic disturbance regime.

Methods

Coral reef data and treatment

Data on benthic cover and herbivorous fish assemblages

were collected between 2010 and 2014 by trained scientific

divers of the Coral Reef Ecosystem Program (CREP) of

NOAA’s Pacific Island Fisheries Science Center. Under-

water visual censuses (UVC) and benthic photoquadrats

(PQs) were carried out at 34 US-affiliated tropical Pacific

islands and atolls, encompassing the Hawaiian and Mari-

anas archipelagoes, American Samoa and the Pacific

Remote Island Areas (PRIAs); this region spans gradients

of human population density, sea surface temperature and

oceanic productivity (Fig. 1; Supplementary Material 2,

Table A1) (Coral Reef Ecosystem Program). UVC obser-

vations were used to estimate herbivorous fish biomass,

and PQs provided estimates of mean percent cover of broad

taxonomic groups (Supplementary Material 3).

We characterized variation among benthic communities

using three metrics: calcifying organism cover (hard corals,

CCA), fleshy algal organism cover (turf and non-calcare-

ous macroalgae) and, as an integrated measure of reef

benthic state, the ratio of calcifier to fleshy algal cover.

After transforming the ratio onto a log10 scale (hereafter

the reef-builder index), positive values indicate sites

dominated by calcifying organisms ([ 50% calcifier cover)

and negative values indicate sites dominated by algal

organisms ([ 50% algal cover) (Supplementary Material 1,

Figs. A1, A2). Benthic substrate composed of sand and

sediment was omitted from these calculations, and thus, the

reef-builder index represents the relative cover of major

benthic taxa rather than absolute abundances. The index

also combines benthic taxa that have distinct ecological

functions. For calcifiers, positive values may represent high

cover of coral or CCA and thus represents calcification

potential rather than directly correlating to calcification

rates (Smith et al. 2016). For algae, negative values may

represent high cover of turf algae or macroalgae and thus

do not distinguish between reefs with cropped turf habitats

and those dominated by macroalgae (Supplementary

Material 6). We tested the sensitivity of the reef-builder

index to macroalgal-dominated sites (i.e., as opposed to

those with a mix of turf and macroalgae) by recomputing

estimates after excluding macroalgal cover.
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Predictor variables

Our biotic grazing predictor, herbivorous fish grazing

pressure, was represented by site-level biomass estimates

calculated from the UVC fish observations. Biomass is

linked to energy expenditure and, as bite and foraging rates

scale allometrically with body size, grazing biomass is

widely used as a proxy for grazing pressure (Nash et al.

2013, 2015). Furthermore, extensive observations of her-

bivorous fish feeding mechanisms and behaviors have been

used to classify these species into a number of broad

functional groups representing distinct grazing functions.

Adapted from Green and Bellwood (2009) and Yeager

et al. (2017a), we classified herbivorous fish species as: (1)

Fig. 1 Spatial variation in reef benthic community composition

across 34 Pacific Islands and atolls (a). Each cell is colored by the

reef-builder index value (red = calcifier-dominated; blue = algal-

dominated) averaged across all sites within 1024 km2 grid cells, for

American Samoa (n = 5) (b), Marianas archipelago (n = 13) (c) and

Hawaiian archipelago (n = 14) (d), and for site-level variation across

one representative island from each island group: Aguijan (e), Wake

(f), Tau (g) and Oahu (n), with points representing UVC sites colored

by ratio values
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croppers, which feed primarily on turf algal assemblages,

including detritus, with minimal impacts to the coral sub-

strate; (2) scrapers and excavators, which consume algae,

detritus and coral by scraping or removing the upper layer

of the reef substrate; (3) browsers that primarily feed on

fleshy macroalgae and do not impact coral substrate

(Supplementary Material 3, Table A2). For each functional

group, herbivore biomass was used as a proximate measure

of the strength of herbivory.

To examine abiotic influences on benthic community

structure, we compiled remote sensing data for sea surface

temperature, net primary productivity, wave energy and

aragonite saturation, because these four covariates have

previously been shown to influence benthic community

composition. We obtained average weekly minimum SST

(�C) estimates from the National Oceanographic Data

Center’s Coral Reef Temperature Anomaly Database

(CoRTAD), based on AVHRR Pathfinder data between

1982 and 2008 at a * 4.6 9 4.6 km resolution (http://

www.nodc.noaa.gov/SatelliteData/Cortad). Net primary

productivity (mg C m-2 d-1) estimates were extracted

from NOAA CoastWatch based on satellite measurements

of photosynthetically available radiation (NASA’s Sea-

WiFS), SST (NOAA’s National Climatic Data Center

Reynolds Optimally Interpolated SST) and chlorophyll a

concentration (NASA Aqua MODIS) and were estimated

every 8 d between 2002 and 2013 at a * 4.6 9 4.6 km

resolution (http://coastwatch.pfeg.noaa.gov/erddap/grid

dap/erdPPbfp28day.graph) (Behrenfield and Falkowski

1997; Yeager et al. 2017b). UVC site estimates were the

average across the time series (Supplementary Material 3).

Although defined here as abiotic, our oceanic productivity

metric is a proxy for phytoplankton availability and thus

represents a bottom-up process. To determine wave energy,

we extracted wave power hourly estimates from the global

Wave Watch III model (Tolman 2014) at a 50 9 50 km

resolution, forced with hindcast winds from 1979 to 2010

(Durrant et al. 2013). Aragonite saturation data were

extracted at the site level from the 1� 9 1� resolution

GLODAPv2 ocean biochemistry climatology dataset

(Lauvset et al. 2016) (Supplementary Material 3). These

aragonite saturation state estimates (Xa) were mapped to a

global extent by data interpolation of CO2 chemistry

samples collected from 724 large-scale oceanographic

cruises between 1972 and 2013 (Olsen et al. 2016). UVC

depth was also included as a predictor covariate to account

for changes in water turbidity, light irradiance and water

flow along the shallow depth gradient (0–30 m) (Williams

et al. 2013). We initially considered island type (atoll, low

island and high island), to account for variation in topog-

raphy and terrestrial inputs, but found that it was a weak

predictor (\ 1.5% variable influence) and thus excluded

this variable from our predictive models.

Finally, to assess potential decoupling of both abiotic

and grazing influences, we classified islands into low (un-

inhabited islands and far from population centers) and high

disturbance groups (inhabited islands and near to popula-

tion centers) using criteria developed for previous analyses

of the CREP dataset (Williams et al. 2015b) (Supplemen-

tary Material 2, Table S1). Human impacts were assigned

at the island level and thus did not account for intra-island

disturbance gradients across sites.

Analyses

We used boosted regression trees (BRTs) to examine the

relative strength of each covariate and all pairwise inter-

actions in predicting the reef-builder index, calcifier cover

and fleshy algal cover at fine scales (i.e., each

site, * 353 m2) over an ocean basin extent. BRT models

are regression tree ensembles constructed by building

‘trees’ sequentially where, at each stage, the next tree

attempts to minimize the deviance of the residuals of the

previous tree (Elith et al. 2008). Thus, boosting improves

model predictive performance and robustness of single

trees. BRTs provide a flexible method of modeling rela-

tionships between variables that can incorporate complex

interaction effects, while also modeling nonlinear rela-

tionships (Elith et al. 2008), which have been detected in

previous macroecological analyses of spatial variation in

reef benthic cover (Jouffray et al. 2015; Heenan and Wil-

liams 2013). BRT performance was optimized by adjusting

three model parameters: tree complexity (tc), which sets

the number of nodes in each tree; learning rate (lr), which

sets the importance of each tree added and so influences the

number of trees included in each model; and bag fraction,

which sets the proportion of the data utilized in each tree.

We fitted models to all combinations of parameter values

across tc (1–2–3–4–5), lr (0.01, 0.001, 0.0001) and bag

fraction (0.25, 0.5, 0.75, 0.9) and selected the parameter set

with the lowest mean predictive deviance as our final fitted

model (Richards et al. 2012) (Supplementary Material 4,

Table A3). BRTs were fitted to a normal distribution for

the reef-builder index, and a Poisson distribution for per-

cent cover estimates of calcifiers and fleshy algal taxa.

For each benthic response variable, BRTs were first

fitted using the full dataset and then, to evaluate potential

human-induced decoupling, separately to inhabited and

uninhabited datasets (sensu Williams et al. 2015a). For all

fitted models, we assessed the relative strengths of abiotic

and grazing predictors by extracting the gbm measure of

relative importance, which is scaled between 0% (weak

influence) and 100% (strong influence). Additionally,

relationships between the reef-builder index and predictors

were visualized using partial dependency plots that show

the fitted function while holding the effect of other
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predictors at their mean (Elith et al. 2008). Uncertainty in

relative importance estimates and model predictions was

quantified using bootstrapped 95% confidence intervals

(Leathwick et al. 2006). Relative model performance was

assessed by estimating the overall deviance explained and

mean predictive deviance for each optimal model. Inter-

actions between predictors were estimated using the

gbm.interactions function in the dismo package (Hijmans

et al. 2017), and we accounted for spatial autocorrelation

using autocovariates to capture correlations in values

between neighboring sites (Crase et al. 2012) (Supple-

mentary Material 3).

All analyses were performed using R version 3.4.1 (R

Development Core Team 2017), BRTs were fitted with the

gbm (Ridgeway 2017) and dismo (Hijmans et al. 2017)

packages, and we provide our data and code at an open-

source repository (https://github.com/baumlab/Robinson-

etal-2018-CoralReefs).

Results

At 1566 sites across 34 islands and atolls spanning * 43�
latitude by * 61� longitude, reef benthic states ranged

from calcifier-dominated (219 sites (13.98%) at 20 islands;

i.e.,[ 50% calcifying cover; 0.03\ reef-builder index\
2.06) to algal-dominated (1129 sites (72.09%) at 32

islands; i.e.,[ 50% fleshy algal cover; - 3\ reef-builder

index\- 0.01) (Supplementary Material 2, Table A1).

The remaining 13.9% of sites were dominated by neither

hard coral nor fleshy algae, but rather by calciferous Hal-

imeda algae, soft corals, sediment and unclassified mate-

rial. Calcifiers typically occupied much less space than

fleshy algae (median cover: calcified = 16.7%; algal =

67.3%), such that six islands in Hawaii (43% of all islands

in this region) and seven islands in the Marianas (54% of

all islands in this region) lacked any calcifier-dominated

sites. In contrast, algal-dominated sites occurred on every

island, rendering this the more common state across the

Pacific (Fig. 1). Among algal-dominated sites, macroalgal-

dominated reefs were rare (1.3% of sites with[ 50%

macroalgal cover) and, as such, negative reef-builder index

values were largely representative of high turf cover reefs

(Fig. A6).

Abiotic covariates were strong predictors of benthic

community composition. Regions of high SST, oceanic

productivity and aragonite saturation state, and low wave

energy, were associated with higher reef-builder values

(i.e., greater calcified cover and lower fleshy algal cover)

(Fig. 2a–c). Along latitudinal temperature and productivity

gradients, the occurrence of algal-dominated reefs was

predicted at the lowest temperatures (\ 21 �C) and pro-

ductivities (\ 300 mg C m2 d-1) (Fig. 2a, b). When

modeled as the response, calcifier cover remained rela-

tively invariant across temperatures with a mean predicted

cover of 20%, whereas algal cover declined from 68 to

48% as temperature increased from 18.5 to 27.5 �C. Thus,
high calcified cover at warmer reefs was due to declines in

algal cover, which increased the relative abundance of

coral and CCA. The model predicted higher cover of cal-

cifying taxa at higher level of ocean productivity,

increasing from 20 to 33% mean predicted cover over

500–700 mg C m2 d-1 (Supplementary Material 1,

Fig. A4a, b). Wave energy also had a moderate influence

on the reef-builder index, which decreased as wave energy

increased (Fig. 2c), such that calcified cover was maxi-

mized at low wave energy sites (\* 25,000 KW h m-1)

and algal cover highest at high wave energy sites

([ 250,000 KW h m-1) (Supplementary Material 1,

Figs. A4c, A5c). Aragonite saturation state had the weakest

abiotic influence on the reef-builder index, but was a strong

predictor of both calcifier cover and fleshy algal cover

when these were modeled separately. Models predicted a

gradual increase in calcified dominance with aragonite

saturation state (Fig. 2d), with calcifier cover maximized at

45% on reefs with high (4.2 Xa) aragonite saturation states

and predicted fleshy algal cover reaching a peak of 65% at

low (3.5 Xa) saturation states (Supplementary Material 1,

Figs. A4d, A5d).

The importance of grazing biomass in predicting the

reef-builder index was generally lower than abiotic

covariates, with scraper and excavator species and cropper

species estimated as the fourth and fifth most important

predictors (Fig. 2i). However, the predicted grazing effect

was similar for both functional groups, whereby shifts to

algal-dominated values (negative effect on reef-builder

index) were only observed at low biomass estimates

(\ 20 kg ha-1), and herbivore biomass above this thresh-

old had no further effect (Fig. 2f,g). Below 20 kg ha-1,

cover values decreased (for calcifiers) or increased (for

algae) by * 5% (Supplementary Material 1, Figs. A4f,g,h,

A5f,g). Browsers had the weakest effect, with calcifier

cover remaining steady across the browser biomass gradi-

ent (Fig. 2h; Supplementary Material 1, Fig. A4i).

Abiotic and grazing relationships did not decouple at

disturbed locations. BRTs fitted separately to inhabited and

uninhabited island datasets identified similar functional

relationships for almost every abiotic and biotic covariate

(Fig. 3). Predicted relationships did, however, decouple

along a depth gradient where, compared to uninhabited

islands, inhabited reefs had greater calcifier cover at shal-

low depths (\ 10 m) and lower calcifier cover below 15 m

(Fig. 3e). Despite no clear decoupling of biophysical dri-

vers, autocovariate relative importance values were highest

in inhabited dataset BRTs and particularly strong in the

inhabited reef-builder index (autocovariate relative
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importance = 43.1%) and calcifier cover (31.8%) models

(Supplementary Material 4, Table S3), indicating that

inhabited reef sites were more spatially autocorrelated than

uninhabited reefs.

Deviance explained was * 45–58% for all models,

indicating that BRTs performed equally in predicting fine-

scale patterns in the reef-builder index, calcified cover and

fleshy algal cover across different disturbance regimes

(Supplementary Material 4, Table S3). Unexplained

deviance was partly attributable to inaccurate predictions

of the highest and lowest reef-builder index values,

although there were no residual patterns in any benthic

cover model (Supplementary Material 1, Fig. A3). Auto-

covariates were important predictors (relative importance:

3.9–43.1%) and were effective in reducing spatial auto-

correlation in all BRTs (Moran’s I coefficient: - 0.03 to

0.08) (Supplementary Material 4, Table S3). Interactions

were strongest between abiotic covariates and site depth,

with higher SST, oceanic productivity and aragonite state

values at shallower depths, while grazing covariates

interacted weakly with each other (all pairwise interac-

tions\ 0.37) (Supplementary Material 5, Table S4).

Discussion

We combined an expansive ecological monitoring dataset

with remotely sensed environmental and anthropogenic

covariates to show that on reefs with more than a minimal

threshold of herbivore biomass, coral benthic community

composition [measured as the ‘reef-builder index’, a

composite indicator of the relative abundances of calcifiers

(hard coral, CCA) and algae (turf and fleshy macroalgae)]

was primarily predicted by natural variation in tempera-

ture, productivity, wave energy and aragonite saturation

state. Calcifier-dominated reefs occurred in warm, pro-

ductive regions on reefs with low wave energy and high

aragonite concentrations. Herbivorous fishes were impor-

tant influences on the reef benthos, with a loss of grazing

pressure at low cropper and scraper and excavator biomass
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Fig. 2 Partial dependence plots and relative importance values for

each covariate. Partial dependence plots show predicted change in

reef-builder index values along the range of each abiotic covariate (a–
e) and biotic grazing covariate (f–h), with relative importance values

(i). Fitted lines are predicted reef-builder index values across the

range of each selected covariate, holding all other covariates to their

mean and with data deciles indicating the distribution of original

observations. Red dashed lines are smoothed LOESS functions, and

shaded areas are 95% uncertainty envelopes generated from boot-

strapped model predictions
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levels corresponding with a transition toward algal-domi-

nated reefs. Our analyses suggest that abiotic conditions

outweigh or match grazing pressure as predictors of the

relative abundances of calcifying and algal organisms at

the site-level scale and provide evidence of the nonlinear

influence of grazing pressure on reef benthic community

composition.

We found that abiotic factors were important predictors

of benthic community state, with the influence of sea sur-

face temperature stronger than all other covariates. Shifts

from negative (algal-dominated) to positive (calcifier-

dominated) reef-builder values tracked increases in sea

surface temperature, as in Williams et al. (2015a), repre-

senting a latitudinal gradient in the relative abundance of

reef calcifiers that is likely linked to energetic constraints

on the growth rates of calcifying organisms (Johannes et al.

1983). The mechanisms by which other abiotic processes

influence coral reef ecosystems are less clear. High

chlorophyll a concentrations, which are indicative of

enhanced near-shore phytoplankton biomass (Gove et al.

2016), have been positively associated with biomass of

sharks, planktivorous and piscivorous teleost fishes (Nadon

et al. 2012; Williams et al. 2015b), suggesting that

increases in particulate food availability (Leichter et al.

1998) and/or background nutrient supply (Burkepile et al.

2013) can indirectly promote coral and CCA cover on

Pacific reefs (Williams et al. 2015a). Calcifier cover also

increased with aragonite saturation state, which demon-

strates an empirical link between reef benthic structure and

carbonate availability at an oceanic scale. Aragonite esti-

mates were, however, time-averaged and thus may mask

fine-scale spatial variation in ocean acidification rates

(Hoegh-Guldberg et al. 2007), which limited our ability to

detect fine-scale shifts in calcification ability.

Wave energy was moderately important in predicting

reef-builder values, consistent with evidence that habitat

suitability is a key influence on benthic community com-

position between sites (Williams et al. 2013) and among

islands (Williams et al. 2015a). Several mechanisms may

link wave action to benthic composition. Coral organisms,

particularly branching growth forms, are vulnerable to

dislodgement, breakage and scour in high-energy envi-

ronments (Madin and Connolly 2006), which might addi-

tionally inhibit grazing activity (Bejarano et al. 2017).

Moderate wave exposure may also raise turf productivity

(Crossman et al. 2001), resulting in algal-dominated reefs

that can support large grazer populations (Heenan et al.

2016). Despite limitations in the spatial resolution of

remotely sensed covariates (Supplementary Material 6), the

combined influence of abiotic processes was consistently

stronger than top-down biotic covariates, in agreement with

recent studies that have highlighted the significant roles

played by biophysical factors in structuring coral reef
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ships. Partial dependence plots show predicted change in reef-builder
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benthic communities (Madin and Connolly 2006; Williams

et al. 2015a).

We also found that grazing pressure by cropper, scraper

and excavator species outweighed that of browsing herbi-

vores, as well as influences of productivity and wave

energy. Such high relative importance suggests that crop-

pers, scrapers and excavators play an important role in

promoting coral recruitment and controlling algal cover

across biogeographic regions and that they might play a

larger role than browser functional groups. Large-bodied

fishes, such as scrapers and excavators, are often prefer-

entially targeted by fishers (Robinson et al. 2017), sug-

gesting that exploitation likely underpins the observed

gradient in grazing pressure. These results align with

experimental site-level grazer exclusion studies indicating

that scraper biomass limits macroalgal cover (Mumby et al.

2006) and that the presence of both cropper and scraper

species promotes coral cover (Burkepile and Hay 2008), as

well as observational evidence of positive associations

between site-level estimates of coral cover and scraper

biomass (Heenan and Williams 2013; Jouffray et al. 2015;

Williams et al. 2016). Weak influences of browsing her-

bivores, which feed on macroalgae, likely reflect the low

incidence of macroalgal-dominated reefs in our dataset,

though future studies that are able to assess influences on

finer-scale benthic groups and, for example, distinguish

between turf and macroalgae, may be able to shed further

insight. By relying on biomass as a proxy for grazing

pressure, our analysis was unable to account for natural

variation in grazing intensity due to environmental differ-

ences, such as lower grazing rates in cooler regions (Bruno

et al. 2015), or for behavioral differences within functional

groups (Streit et al. 2015). Indeed, herbivore biomass itself

has been shown to track temperature gradients (Heenan

et al. 2016), meaning that grazing might become decoupled

from algal abundances, particularly if algal dominance

shifts from turf to macroalgae (Supplementary Material 6).

Further investigation into natural variation in grazing

intensity across regions with different environmental

regimes will help to connect experimental grazing studies

with correlational patterns such as ours. However, as sev-

eral abiotic covariates were consistently stronger predictors

of the reef-builder index than grazing biomass, we suggest

that, at the scale of our study, benthic composition of a

given reef is primarily determined by environmental con-

ditions rather than grazing capacity, given a minimum

threshold of grazer presence.

Despite previous evidence that biophysical benthic dri-

vers decouple across Pacific islands (Williams et al.

2015a), our analyses showed that biophysical and grazing

relationships were similar at inhabited and uninhabited

reefs. The discrepancy between Williams et al. (2015a) and

our analysis is likely largely a problem of scale. Intra-

island gradients in biophysical drivers (Gove et al. 2015)

and human stressors (including herbivore exploitation)

drive site-level heterogeneity in benthic community com-

positions that may be obscured in island-scale analyses

(Williams et al. 2015a). Thus, at finer scales, abiotic

influences remain important predictors of disturbed reef

systems, perhaps in part because inhabited islands are

larger than uninhabited atolls and thus tend to be charac-

terized by substantially more benthic and biophysical

variability. We were also able to account for exploitation

gradients that alter grazing control and that might therefore

have been part of the reason for decoupling. Nevertheless,

strong spatial autocorrelation at inhabited islands suggests

that anthropogenic stressors do drive benthic degradation at

a sub-island scale (i.e., on nearby reefs) and can weaken

the influence of abiotic and grazing processes. Thus, rela-

tionships were not decoupled, but instead weakened as

unmeasured anthropogenic stressors homogenized benthic

communities among neighboring reefs on inhabited

islands. Combining herbivore biomass with fine-scale

indices of terrestrial pollution to predict benthic states

within islands (e.g., Jouffray et al. 2015) in future studies

would facilitate understanding of which scales are most

relevant for human impacts. Indeed, improving the tem-

poral resolution of herbivore surveys and spatial and tem-

poral grain of remotely sensed abiotic covariates will

greatly advance our understanding of scale dependence in

benthic drivers (Supplementary Material 6). Such approa-

ches are particularly critical in the context of ongoing

warming and acidification of reef environments, which

further confound empirical assessments of anthropogenic

influences as local impacts become superseded by global

stressors (Bruno and Valdivia 2016).

Understanding the relative influences of abiotic and

biotic factors on benthic community structure, and poten-

tial decoupling of those relationships, can provide insights

into which components of reef resilience might be most

effectively managed. Our results suggest that biophysical

context is likely key in controlling the relative abundance

of calcifiers and algal organisms and thus is a primary

determinant of reef state at macroecological scales. For

example, some remote Hawaiian coral reefs which are

algal-dominated irrespective of grazer biomass have chal-

lenged perceptions that healthy reefs are always coral-

dominated (Vroom and Braun 2010; Helyer and Samhouri

2017), while others have demonstrated that macroalgal taxa

have broad functional roles, ranging from fleshy algal food

for browsing herbivores (Streit et al. 2015) to reef sediment

production by calcareous Halimeda (Perry et al. 2015). As

such, fine-scale analysis of variation in algal community

structure, including transitions from turf to macroalgal

regimes (Jouffray et al. 2015), will advance our under-

standing of the health and functioning of algal reefs.
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Alternatively, in warm and productive regions, healthy and

diverse grazing communities confer resilience after loss of

coral cover following disturbance events (Cheal et al. 2010;

Graham et al. 2015). Such distinctions can be used to

inform quantitative baseline states for degraded reef sys-

tems across environmental gradients, which will be vastly

improved by integration of local abiotic constraints with

grazing capacity.

Irrespective of environmental conditions, nonlinearities

in benthic community composition–grazing relationships

show that areas of extremely low herbivore biomass are

characterized by algal-dominated states, consistent with the

evidence of thresholds in reef benthic state at low grazer

biomass (Graham et al. 2015; Jouffray et al. 2015). Such

grazing tipping points, which have previously only been

demonstrated at small scales (Rasher et al. 2013; Holbrook

et al. 2016) or within regions (Jouffray et al. 2015), provide

tangible targets for conserving grazing function on

exploited reefs. Consideration of grazing thresholds may

help to resolve uncertainty around the effectiveness of

management strategies that aim to protect reef benthos by

promoting herbivorous grazing in marine protected areas.

For example, examples of high grazing rates enhancing

coral growth and recruitment (Mumby et al. 2007; Rasher

et al. 2012) appear at odds with studies reporting no effect

of protection status on benthic state (Jones et al. 2004),

while perceived management ineffectiveness in promoting

coral recovery may arise when herbivore populations

remain at low levels (Huntington et al. 2011; Carassou

et al. 2013). Our results suggest that, when environmental

conditions promote cover of calcifying organisms, restor-

ing grazing function of cropper, scraper and excavator

species at heavily exploited reef sites that support very low

herbivore populations and, in less degraded regions, pre-

venting depletion of grazer populations below a thresh-

old * 10–20 kg ha-1 could be effective in controlling

potentially problematic algae and maintaining dominance

of reef builders.

In coral reef ecosystems, the roles of abiotic, biotic and

anthropogenic processes in driving macroecological pat-

terns have usually been considered independently. For

example, variation in Pacific reef benthic cover has been

examined among regions in the context of human presence

alone (Smith et al. 2016) or of humans and biophysical

forces (Williams et al. 2015a) and, within regions, in the

context of either grazing biomass (Jouffray et al. 2015) or

abiotic drivers (Sandin et al. 2008) along human distur-

bance gradients, but rarely for all three components or

across different regions. Here, we show how large-scale

abiotic gradients set constraints on coral reef benthic

community composition and are modified by local bio-

physical processes and herbivore grazing pressure. Our

results provide a foundation for a unified understanding of

the strength of abiotic and biotic controls on reef benthic

communities and predict abiotic relationships that can help

inform expectations of both contemporary baselines and

future benthic states for Pacific reefs, as species respond to

anthropogenic warming and ocean acidification (Hughes

et al. 2017). Understanding constraints on benthic com-

munity configurations will be further advanced by com-

bining fine-scale remote sensing data (e.g., Wedding et al.

2018) with replicated ecological observations and testing

for scale dependence in potential decoupling of benthic

drivers. Such examination of spatial and temporal variation

in the biophysical and grazing factors that structure reef

benthos across scales will help to ensure that anthropogenic

impacts are framed in the correct abiotic context.
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